If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+10n=0
a = 3; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·3·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*3}=\frac{-20}{6} =-3+1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*3}=\frac{0}{6} =0 $
| 9(-4m+2=18-36m | | y/5–2=4 | | n-283=458 | | -5(x+4)=-2(2x+1 | | v-11=21 | | 64=8^x | | r/9=19 | | 3x-13°+58°=90° | | 3r-9=-15 | | r-4=174 | | 15w^2+13w=-6 | | b=90+3 | | 25z^2-45=0 | | p/4-6=10 | | 4x=10=6 | | 21-7=u | | 180=2x+4+2x | | p=42/6 | | h+22=100 | | b=4(23) | | z+55=68 | | 2x+10/x+2=0 | | (2+c)2=(c+5)c | | j-10=22 | | 10=5r-13r-4) | | x2+8x-12=0 | | 4=c^2+3c | | 6+x÷6=8 | | 45=3k | | 90=9k | | 9(-4m+2)=18-36m | | 9x12=x |